Abstract
A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and “wire” GcGDH to the spectrographic graphite electrode’s surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4′-dimethyl-2,2′-bipyridine)2(PVI)Cl]+ had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm–2 at a 30 mM glucose concentration.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 334–341 |
Journal | Analytical Chemistry |
Volume | 84 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 |
MoE publication type | A1 Journal article-refereed |