TY - JOUR
T1 - Direct Functional Protein Delivery with a Peptide into Neonatal and Adult Mammalian Inner Ear In Vivo
AU - Zhang, Kun
AU - Cheng, Xiaoting
AU - Zhao, Liping
AU - Huang, Mingqian
AU - Tao, Yong
AU - Zhang, Hongbo
AU - Rosenholm, Jessica
AU - Zhuang, Min
AU - Chen, Zheng-Yi
AU - Chen, Bing
AU - Shu, Yilai
PY - 2020/9
Y1 - 2020/9
N2 - The aim of this study was to study an antimicrobial peptide (AMP), aurein 1.2, which substantially increased protein delivery directly into multiple mammalian inner-ear cell types in vivo. Different concentrations of aurein 1.2 with superpositively charged GFP (+36 GFP) protein fused with Cre recombinase were delivered to postnatal day 1-2 (P1-2) and adult cochleae of Cre reporter transgenic mice with various delivery methods. By cochleostomy at different concentrations of aurein 1.2–+36 GFP (1 μM, 5 μM, 22.5 μM, and 50 μM, respectively), the tdTomato (tdT) expression was observed in outer hair cells (OHCs; 20.77%, 23.02%, 76.36%, and 92.47%, respectively) and inner hair cells (IHCs; 14.90%, 44.50%, 89.59%, and 96.13%, respectively) in the cochlea. The optimal concentration was 22.5 μM with the highest transfection efficiency and the lowest cytotoxicity. Wide-spread tdT signals were detected in the cochlear-supporting cells, utricular-supporting cells, auditory nerve, and spiral ligament in neonatal and adult mice. Compared to cochleostomy, injection through the round window membrane (RWM) also produced highly efficient tdT+ labeled cells with less cell loss. In summary, the peptide aurein 1.2 fused with +36 GFP dramatically expanded the target cells with increased efficiency in direct protein delivery in the inner ear. Aurein 1.2–+36 GFP has the potential to be developed as protein-based therapy in regeneration and genome editing in the mammalian inner ear.
AB - The aim of this study was to study an antimicrobial peptide (AMP), aurein 1.2, which substantially increased protein delivery directly into multiple mammalian inner-ear cell types in vivo. Different concentrations of aurein 1.2 with superpositively charged GFP (+36 GFP) protein fused with Cre recombinase were delivered to postnatal day 1-2 (P1-2) and adult cochleae of Cre reporter transgenic mice with various delivery methods. By cochleostomy at different concentrations of aurein 1.2–+36 GFP (1 μM, 5 μM, 22.5 μM, and 50 μM, respectively), the tdTomato (tdT) expression was observed in outer hair cells (OHCs; 20.77%, 23.02%, 76.36%, and 92.47%, respectively) and inner hair cells (IHCs; 14.90%, 44.50%, 89.59%, and 96.13%, respectively) in the cochlea. The optimal concentration was 22.5 μM with the highest transfection efficiency and the lowest cytotoxicity. Wide-spread tdT signals were detected in the cochlear-supporting cells, utricular-supporting cells, auditory nerve, and spiral ligament in neonatal and adult mice. Compared to cochleostomy, injection through the round window membrane (RWM) also produced highly efficient tdT+ labeled cells with less cell loss. In summary, the peptide aurein 1.2 fused with +36 GFP dramatically expanded the target cells with increased efficiency in direct protein delivery in the inner ear. Aurein 1.2–+36 GFP has the potential to be developed as protein-based therapy in regeneration and genome editing in the mammalian inner ear.
KW - targeted delivery
KW - Peptide
KW - drug delivery
UR - https://www.sciencedirect.com/science/article/pii/S2329050120301479
U2 - 10.1016/j.omtm.2020.06.023
DO - 10.1016/j.omtm.2020.06.023
M3 - Article
VL - 18
SP - 511
EP - 519
JO - Molecular Therapy - Methods & Clinical Development
JF - Molecular Therapy - Methods & Clinical Development
SN - 2329-0501
IS - 11
ER -