Degradation of the cellulosic key chromophores 2,5- and 2,6-dihydroxyacetophenone by hydrogen peroxide under alkaline conditions. Chromophores in cellulosics, XVII

Nele S. Zwirchmayr, Ute Henniges, Markus Bacher, Takashi Hosoya, Heidemarie Reiter, Martin Spitzbart, Thomas Dietz, Klaus Eibinger, Wolfgang Kreiner, Arnulf Kai Mahler, Heribert Winter, Thomas Röder, Antje Potthast, Thomas Elder, Thomas Rosenau

    Research output: Contribution to journalArticleScientificpeer-review

    2 Citations (Scopus)


    The dihydroxyacetophenones 2,5-dihydroxyacetophenone (2,5-DHAP) and 2,6-dihydroxy-acetophenone (2,6-DHAP) belong to the key chromophores in cellulosic materials. The pulp and paper industry targets these key chromophores in their bleaching sequences to obtain brighter products. 2,5-DHAP and 2,6-DHAP were degraded with hydrogen peroxide in alkaline media, similar to conditions of peroxide bleaching (P stage) in industrial pulp bleaching. Degradation product analyses were performed by GC–MS and NMR. The degradation reaction starts by loss of acetic acid originating from the acetyl moiety of the dihydroxyacetophenones (Baeyer–Villiger rearrangement). Further reaction steps involve introduction of another hydroxyl group at C-1 (previously acetyl bearing), and further oxidation of the resulting trihydroxybenzene to quinone intermediates which are ultimately degraded to a mixture of low-molecular weight carboxylic acids.

    Original languageUndefined/Unknown
    Pages (from-to)3815–3826
    Issue number7
    Publication statusPublished - 2018
    MoE publication typeA1 Journal article-refereed

    Cite this