Abstract
A coulometric signal readout method, which was originally developed for solid-contact ion-selective electrodes, was investigated in this work using LiMn2O4 (LMO) as a combined ion-recognition and signal-transduction layer. The redox process of LMO, which is associated with reversible intercalation/expulsion of Li+ ions, allowed coulometric sensing of Li+ ions in aqueous solutions. On increasing the active area (mass loading) of LMO, the coulometric signal increased for a given change in Li+ ion activity. The excellent redox reversibility of LMO and its relatively low resistance were instrumental in achieving a high signal amplification together with a relatively fast response. Coating the LMO layer with a conventional Li+-selective plasticized PVC membrane was found to dramatically lower the coulometric response. Hence, the application of LMO as a combined Li+-selective electrode material and ion-to-electron transducer was found to be highly compatible with the coulometric signal readout method, especially for detecting small Li+ activity changes at high Li+ concentrations.
Original language | English |
---|---|
Article number | 107302 |
Number of pages | 7 |
Journal | Electrochemistry Communications |
Volume | 139 |
DOIs | |
Publication status | Published - 2022 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Coulometric signal readout
- LiMnO
- Membrane-free ISEs
- Solid-contact ISEs
Fingerprint
Dive into the research topics of 'Coulometric ion sensing with Li+-selective LiMn2O4 electrodes'. Together they form a unique fingerprint.Equipment
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Faculty of Science and EngineeringFacility/equipment: Facility