Projects per year
Abstract
Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.
Original language | English |
---|---|
Article number | 65 |
Journal | ChemEngineering |
Volume | 5 |
Issue number | 4 |
DOIs | |
Publication status | Published - Dec 2021 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'Comparison of the Fluidized State Stability from Radioactive Particle Tracking Results'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Tenure Track professur, Energitekniken
Hupa, M. (Co-Investigator), Salmi, T. (Co-Investigator), Björklund-Sänkiaho, M. (Principal Investigator) & De Blasio, C. (Principal Investigator)
01/01/20 → 31/12/24
Project: Core financing