TY - GEN
T1 - Carbon dioxide storage by mineralisation applied to a lime kiln
AU - Romão, Inês
AU - Eriksson, Matias
AU - Nduagu, Experience
AU - Fagerlund, Johan
AU - Gando-Ferreira, Licínio M.
AU - Zevenhoven, Ron
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - This paper describes a design, for a pilot-scale application, of a two-staged process that is under study at Åbo Akademi University (ÅA), for Carbon dioxide Storage by Mineralisation (CSM). The ÅA route implies the production of brucite (besides Ca- and Fe- based by-products) from a magnesium/calcium silicate rock, using recoverable ammonium sulphate (AS), followed by carbonation of the Mg(OH)2 in a pressurised fluidised bed at ~ 500°C, 20-30 bar CO2 partial pressure. An assessment is reported for operating the CSM process on waste heat from a limekiln (lime production: 210 t/day) in Pargas, Southwest Finland, i.e. without external energy input apart from what is needed for crushing the rock to the required particle size (a few % of the overall CSM process energy requirement) and compressing the flue gas to be treated. Part of the off-gas from the limekiln (CO2 content ~21%-vol) will be processed without a CO2 separation step. The feature of operating without CO2 separation makes CSM an attractive and cost-competitive option when compared to conventional CCS involving underground storage of CO2. An exergy analysis is used to optimise process layout and energy efficiency, and at the same time maximise the amount of CO2 that can be bound to MgCO3 given the amount of waste heat available from the kiln. Also, experimental results are reported for producing Mg(OH)2 (and Fe,Ca(OH)2) from local rock material.
AB - This paper describes a design, for a pilot-scale application, of a two-staged process that is under study at Åbo Akademi University (ÅA), for Carbon dioxide Storage by Mineralisation (CSM). The ÅA route implies the production of brucite (besides Ca- and Fe- based by-products) from a magnesium/calcium silicate rock, using recoverable ammonium sulphate (AS), followed by carbonation of the Mg(OH)2 in a pressurised fluidised bed at ~ 500°C, 20-30 bar CO2 partial pressure. An assessment is reported for operating the CSM process on waste heat from a limekiln (lime production: 210 t/day) in Pargas, Southwest Finland, i.e. without external energy input apart from what is needed for crushing the rock to the required particle size (a few % of the overall CSM process energy requirement) and compressing the flue gas to be treated. Part of the off-gas from the limekiln (CO2 content ~21%-vol) will be processed without a CO2 separation step. The feature of operating without CO2 separation makes CSM an attractive and cost-competitive option when compared to conventional CCS involving underground storage of CO2. An exergy analysis is used to optimise process layout and energy efficiency, and at the same time maximise the amount of CO2 that can be bound to MgCO3 given the amount of waste heat available from the kiln. Also, experimental results are reported for producing Mg(OH)2 (and Fe,Ca(OH)2) from local rock material.
KW - Lime kiln
KW - Scale-up
UR - http://www.scopus.com/inward/record.url?scp=84896526376&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84896526376
SN - 9788866553229
T3 - Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS 2012
SP - 103
EP - 115
BT - Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS 2012
T2 - 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, ECOS 2012
Y2 - 26 June 2012 through 29 June 2012
ER -