TY - JOUR
T1 - Candesartan Has No Clinically Meaningful Effect on the Plasma Concentrations of Cytochrome P450 2C8 Substrate Repaglinide in Humans
AU - Piha, Mikael O.W.
AU - Cajanus, Kristiina
AU - Engström, Marica T.
AU - Neuvonen, Mikko
AU - Bergmann, Troels K.
AU - Niemi, Mikko
AU - Backman, Janne T.
AU - Filppula, Anne M.
AU - Tornio, Aleksi
PY - 2024/12/1
Y1 - 2024/12/1
N2 - In vitro evidence shows that the acyl-β-D-glucuronide metabolite of candesartan inhibits cytochrome P450 (CYP) 2C8 with an inhibition constant of 7.12 μM. We investigated the effect of candesartan on the plasma concentrations and glucose-lowering effect of repaglinide, a sensitive clinical CYP2C8 index substrate. In a randomized crossover study, ten healthy volunteers ingested 8 mg of candesartan or placebo daily for three days, and on day 3, they also ingested 0.25 mg of repaglinide one hour after candesartan or placebo. We measured the plasma concentrations of repaglinide, candesartan, and candesartan acyl-β-D-glucuronide, and blood glucose concentrations for up to nine hours after repaglinide intake. Candesartan had no effect on the area under the plasma concentration-time curve and peak plasma concentration of repaglinide compared with placebo, with ratios of geometric means of 1.02 [P = 0.809; 90% confidence interval (CI) 0.90-1.15] and 1.13 (P = 0.346; 90% CI 0.90-1.43), respectively. Other pharmacokinetic variables and blood glucose concentrations were neither affected. Candesartan acyl-β-D-glucuronide was detectable in seven subjects, in whom the peak concentration of repaglinide was 1.32-fold higher in the candesartan phase than in the placebo phase (P = 0.041; 90% CI 1.07-1.62). Systemic concentrations of candesartan acyl-β-D-glucuronide were very low compared with its CYP2C8 inhibition constant (ratio ≪ 0.1). Furthermore, in a cohort of 93 cancer patients, no indication of decreased paclitaxel clearance was found in four patients using candesartan concomitantly. In conclusion, candesartan therapy is unlikely to inhibit CYP2C8-mediated metabolism of other drugs to any clinically significant extent. SIGNIFICANCE STATEMENT: The findings of this study suggest that candesartan is unlikely to cause drug-drug interactions via inhibition of cytochrome P450 (CYP) 2C8. Although candesartan acyl-β-D-glucuronide has been shown to inhibit CYP2C8 in vitro, it shows no clinically relevant CYP2C8 inhibition in humans due to low systemic concentrations.
AB - In vitro evidence shows that the acyl-β-D-glucuronide metabolite of candesartan inhibits cytochrome P450 (CYP) 2C8 with an inhibition constant of 7.12 μM. We investigated the effect of candesartan on the plasma concentrations and glucose-lowering effect of repaglinide, a sensitive clinical CYP2C8 index substrate. In a randomized crossover study, ten healthy volunteers ingested 8 mg of candesartan or placebo daily for three days, and on day 3, they also ingested 0.25 mg of repaglinide one hour after candesartan or placebo. We measured the plasma concentrations of repaglinide, candesartan, and candesartan acyl-β-D-glucuronide, and blood glucose concentrations for up to nine hours after repaglinide intake. Candesartan had no effect on the area under the plasma concentration-time curve and peak plasma concentration of repaglinide compared with placebo, with ratios of geometric means of 1.02 [P = 0.809; 90% confidence interval (CI) 0.90-1.15] and 1.13 (P = 0.346; 90% CI 0.90-1.43), respectively. Other pharmacokinetic variables and blood glucose concentrations were neither affected. Candesartan acyl-β-D-glucuronide was detectable in seven subjects, in whom the peak concentration of repaglinide was 1.32-fold higher in the candesartan phase than in the placebo phase (P = 0.041; 90% CI 1.07-1.62). Systemic concentrations of candesartan acyl-β-D-glucuronide were very low compared with its CYP2C8 inhibition constant (ratio ≪ 0.1). Furthermore, in a cohort of 93 cancer patients, no indication of decreased paclitaxel clearance was found in four patients using candesartan concomitantly. In conclusion, candesartan therapy is unlikely to inhibit CYP2C8-mediated metabolism of other drugs to any clinically significant extent. SIGNIFICANCE STATEMENT: The findings of this study suggest that candesartan is unlikely to cause drug-drug interactions via inhibition of cytochrome P450 (CYP) 2C8. Although candesartan acyl-β-D-glucuronide has been shown to inhibit CYP2C8 in vitro, it shows no clinically relevant CYP2C8 inhibition in humans due to low systemic concentrations.
UR - https://doi.org/10.1124/dmd.124.001798
U2 - 10.1124/dmd.124.001798
DO - 10.1124/dmd.124.001798
M3 - Article
C2 - 39486868
SN - 0090-9556
VL - 52
SP - 1388
EP - 1395
JO - Drug Metabolism and Disposition
JF - Drug Metabolism and Disposition
IS - 12
ER -