Abstract
The applicability of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) in combination with the use of stable oxygen isotopes (16O and 18O) in high-temperature corrosion research was addressed in this study. In terms of the corrosion reaction timescale, the focus was on the initiation of KCl-induced high-temperature corrosion and on the behaviour of three commercial alloys under conditions where multiple oxygen sources (air and water vapour) were present.ToF-SIMS proved to be an applicable tool in high-temperature corrosion studies, in this case, providing detailed information about the distribution of the two oxygen isotopes at the sample surfaces. Oxygen from air prefers to form a solid intermediate, potassium chromate (K2CrO4), when reacting with a chromia-forming alloy, whereas oxygen from both sources was found in the oxide formed at the alloy surface. Regardless of the prevailing conditions, the nickel-based austenitic alloy withstood corrosion the best, then the iron-based high alloy austenitic steel, whereas the low alloy ferritic steel had the poorest corrosion resistance ability.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 1–11 |
Journal | Corrosion Science |
Volume | 125 |
DOIs | |
Publication status | Published - 2017 |
MoE publication type | A1 Journal article-refereed |
Keywords
- high-temperature corrosion
- Oxidation
- Low alloy steel
- Stainless steel