Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution

Tingting Han, Tao Song, Yu Bao*, Zhonghui Sun, Yingming Ma, Ying He, Shiyu Gan, Dechen Jiang, Dongxue Han, Johan Bobacka, Li Niu

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

4 Citations (Scopus)


An alternative transduction method for ion-selective electrodes (ISEs) is studied by utilizing oxidation/reduc-tion of a Fe(CN)63-/4-redox couple dissolved in solution. Two compartments are employed as electrochemical cell, connected by an Ag/AgCl bridge. A K+-selective solid-contact ISE (K+-SCISE) with reduced graphene oxide as solid contact works as reference electrode (RE) and is placed in the sample solution compartment. A gold electrode acting as working electrode (WE) and a platinum as counter electrode (CE) are placed in the detection compartment with a solution containing the Fe(CN)63-/4-redox couple. As the primary ion (K+) concentration changes, the potential of the K+-SCISE will change accordingly. Since the potential between WE and RE is kept constant by using a potentiostat, any change in the concentration of primary ion K+ will result in an oxidation/reduction current from the Fe(CN)63-/4-redox couple at the surface of the Au WE, causing a current flowing between the Au WE and Pt CE. The diffusion-limited current from oxidation/reduction of the Fe(CN)63-/4-redox couple is linearly proportional to the logarithm of the activity of the primary ion within a certain concentration range of the primary ion. The reversibility and reproducibility of the amperometric response from oxidation/reduction of Fe(CN)63-/4-is proven in this work. A unique feature of this method is that current signal can be enlarged by increasing the geometric surface area of the WE. The amperometric response of the Fe(CN)63-/4-redox couple is highly dependent on the applied starting potential. The sensitivity of the amperometric response can be optimized by applying a potential equal to the half-peak potential (Ep/2). Furthermore, the amperometric response is applied for determination of K+ ion concentration in such a demanding matrix as human blood serum.
Original languageEnglish
Article number116683
Number of pages8
JournalJournal of Electroanalytical Chemistry
Publication statusPublished - 2022
MoE publication typeA1 Journal article-refereed


Dive into the research topics of 'Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution'. Together they form a unique fingerprint.

Cite this