Abstract
A paper-based platform was developed and tested for studies on basic cell culture, material biocompatibility, and activity of pharmaceuticals in order to provide a reliable, robust and low-cost cell study platform. It is based upon a paper or paperboard support, with a nanostructured latex coating to provide an enhanced cell growth and sufficient barrier properties. Wetting is limited to regions of interest using a flexographically printed hydrophobic polydimethylsiloxane layer with circular non-print areas. The nanostructured coating can be substituted for another coating of interest, or the regions of interest functionalized with a material to be studied. The platform is fully up-scalable, being produced with roll-to-roll rod coating, flexographic and inkjet printing methods. Results show that the platform efficiency is comparable to multi-well plates in colorimetric assays in three separate studies: a cell culture study, a biocompatibility study, and a drug screening study. The color intensity is quantified by using a common office scanner or an imaging device and the data is analyzed by a custom computer software without the need for expensive screening or analysis equipment.
Original language | English |
---|---|
Pages (from-to) | 1146–1156 |
Journal | Journal of Materials Chemistry. B |
Volume | 8 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2020 |
MoE publication type | A1 Journal article-refereed |
Fingerprint
Dive into the research topics of 'A low-cost paper-based platform for fast and reliable screening of cellular interactions with materials'. Together they form a unique fingerprint.Equipment
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Faculty of Science and EngineeringFacility/equipment: Facility