Abstract
An electrode platform printed on a recyclable low-cost paper substrate was characterized using cyclic voltammetry. The working and counter electrodes were directly printed gold-stripes, while the reference electrode was a printed silver stripe onto which an AgCl layer was deposited electrochemically. The novel paper-based chips showed comparable performance to conventional electrochemical cells. Different types of electrode modifications were carried out to demonstrate that the printed electrodes behave similarly with conventional electrodes. Firstly, a self-assembled monolayer (SAM) of alkanethiols was successfully formed on the Au electrode surface. As a consequence, the peak currents were suppressed and no longer showed clear increase as a function of the scan rate. Such modified electrodes have potential in various sensor applications when terminally substituted thiols are used. Secondly, a polyaniline film was electropolymerized on the working electrode by cyclic voltammetry and used for potentiometric pH sensing. The calibration curve showed close to Nerstian response. Thirdly, a poly(3,4-ethylenedioxythiophene) (PEDOT) layer was electropolymerized both by galvanostatic and cyclic potential sweep method on the working electrode using two different dopants; Cl- to study ion-to-electron transduction on paper-Au/PEDOT system and glucose oxidase in order to fabricate a glucose biosensor. The planar paper-based electrochemical cell is a user-friendly platform that functions with low sample volume and allows the sample to be applied and changed by e.g. pipetting. Low unit cost is achieved with mask- and mesh-free inkjet-printing technology.
Original language | English |
---|---|
Pages (from-to) | 153–162 |
Number of pages | 10 |
Journal | Sensors and Actuators B: Chemical |
Volume | 177 |
DOIs | |
Publication status | Published - 2013 |
MoE publication type | A1 Journal article-refereed |
Keywords
- Cyclic voltammetry
- Electrochemical biosensor
- Gold electrode
- Inkjet printing
- Low-cost paper chip
Fingerprint
Dive into the research topics of 'A low-cost paper-based inkjet-printed platform for electrochemical analyses'. Together they form a unique fingerprint.Equipment
-
Åbo Akademi Functional Printing Center
Toivakka, M. (PI), Rosenholm, J. (PI), Anttu, N. (PI), Bobacka, J. (PI), Huynh, T. P. (PI), Peltonen, J. (PI), Wang, X. (PI), Wilen, C.-E. (PI), Xu, C. (PI), Zhang, H. (PI) & Österbacka, R. (PI)
Faculty of Science and EngineeringFacility/equipment: Facility