A data-mining method for detection of complex nonlinear relations applied to a model of apoptosis in cell populations

    Research output: Contribution to journalArticleScientificpeer-review


    In studying data sets for complex nonlinear relations, neural networks can be used as modeling tools. Trained fully connected networks cannot, however, reveal the relevant inputs among a large set of potential ones, so a pruning of the connections must be undertaken to reveal the underlying relations. The paper presents a general method for detecting nonlinear relations between a set of potential inputs and an output variable. The method is based on a neural network pruning algorithm, which is run repetitively to finally yield Pareto fronts of solutions with respect to the approximation error and network complexity. The occurrence of an input on these fronts is taken to reflect its relevance for describing the output variable. The method is illustrated on a simulated cell population sensitized to death-inducing ligands resulting in programmed cell death (apoptosis).
    Original languageUndefined/Unknown
    Pages (from-to)687–695
    Number of pages9
    JournalLecture Notes in Computer Science
    Publication statusPublished - 2010
    MoE publication typeA1 Journal article-refereed


    • apoptosis model
    • data mining
    • Nonlinear modeling
    • pruning

    Cite this