A combined theoretical and experimental approach for platinum catalyzed 1,2-propanediol aqueous phase reforming

Roberto Schimmenti, Remedios Cortese, Lidia Godina, Antonio Prestianni, Francesco Ferrante, Dario Duca, Dmitry Murzin

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)


Decomposition pathways of 1,2-propanediol (1,2-PDO) on platinum were investigated by means of experiments and quantum-mechanical calculations. Different reaction paths on a Pt(111) model surface were computationally screened. Gas and liquid phase products distribution for aqueous phase reforming of 1,2-PDO solutions was experimentally analyzed. A mechanistic approach was used to trace the preferred paths according to calculated activation barriers of the elementary steps; in this way, the presence or absence of some hypothesized intermediates in the experiments was computationally rationalized. Hydroxyacetone was demonstrated to be among the most favored decomposition products. The competition between C–H, O–H, and C–C bond cleavages was investigated, revealing that shortening of the carbon chain occurs most likely via decarbonylation steps.

Original languageUndefined/Unknown
Pages (from-to)14636–14648
JournalJournal of Physical Chemistry C
Issue number27
Publication statusPublished - 2017
MoE publication typeA1 Journal article-refereed


  • Chemical Engineering

Cite this