Description
This repository includes a StarDist deep learning model and its training and validation datasets for detecting fluorescently labeled cancer cells perfused over an endothelial cell monolayer. The model was trained on 66 images labeled with CellTrace and demonstrated high accuracy, achieving an average F1 Score of 0.877. The dataset and the trained model can be used for biomedical image analysis, particularly in cancer research.
Specifications
Model: StarDist for cancer cell detection
Training Dataset:
Number of Images: 66 paired fluorescent microscopy images and label masks
Microscope: Nikon Eclipse Ti2-E, 10x objective
Data Type: Fluorescent microscopy images with manually segmented masks
File Format: TIFF (.tif)
Brightfield Images: 16-bit
Masks: 8-bit
Image Size: 1024 x 1024 pixels (Pixel size: 1.3205 μm)
Training Parameters:
Epochs: 200
Patch Size: 1024 x 1024 pixels
Batch Size: 2
Performance:
Average F1 Score: 0.877
Average IoU: 0.646
Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)
Reference
Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654
Specifications
Model: StarDist for cancer cell detection
Training Dataset:
Number of Images: 66 paired fluorescent microscopy images and label masks
Microscope: Nikon Eclipse Ti2-E, 10x objective
Data Type: Fluorescent microscopy images with manually segmented masks
File Format: TIFF (.tif)
Brightfield Images: 16-bit
Masks: 8-bit
Image Size: 1024 x 1024 pixels (Pixel size: 1.3205 μm)
Training Parameters:
Epochs: 200
Patch Size: 1024 x 1024 pixels
Batch Size: 2
Performance:
Average F1 Score: 0.877
Average IoU: 0.646
Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)
Reference
Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654
| Date made available | 26 Jan 2024 |
|---|---|
| Publisher | Zenodo |