Description
This repository includes a StarDist deep learning model and its training and validation datasets for detecting neutrophils perfused over an endothelial cell monolayer. The model was trained on 36 manually annotated images, achieving an average F1 Score of 0.969. The dataset and model are intended for use in biomedical research, particularly for analyzing interactions between neutrophils and endothelial cells.
Specifications
Model: StarDist for neutrophil detection on endothelial cells
Training Dataset:
Number of Images: 36 paired brightfield microscopy images and label masks
Microscope: Nikon Eclipse Ti2-E, 20x objective
Data Type: Brightfield microscopy images with manually segmented masks
File Format: TIFF (.tif)
Brightfield Images: 16-bit
Masks: 8-bit
Image Size: 1024 x 1022 pixels (Pixel size: 650 nm)
Training Parameters:
Epochs: 400
Patch Size: 992 x 992 pixels
Batch Size: 2
Performance:
Average F1 Score: 0.969
Average IoU: 0.914
Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)
Reference
Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654
Specifications
Model: StarDist for neutrophil detection on endothelial cells
Training Dataset:
Number of Images: 36 paired brightfield microscopy images and label masks
Microscope: Nikon Eclipse Ti2-E, 20x objective
Data Type: Brightfield microscopy images with manually segmented masks
File Format: TIFF (.tif)
Brightfield Images: 16-bit
Masks: 8-bit
Image Size: 1024 x 1022 pixels (Pixel size: 650 nm)
Training Parameters:
Epochs: 400
Patch Size: 992 x 992 pixels
Batch Size: 2
Performance:
Average F1 Score: 0.969
Average IoU: 0.914
Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki)
Reference
Fast label-free live imaging reveals key roles of flow dynamics and CD44-HA interaction in cancer cell arrest on endothelial monolayers
Gautier Follain, Sujan Ghimire, Joanna W. Pylvänäinen, Monika Vaitkevičiūtė, Diana Wurzinger, Camilo Guzmán, James RW Conway, Michal Dibus, Sanna Oikari, Kirsi Rilla, Marko Salmi, Johanna Ivaska, Guillaume Jacquemet
bioRxiv 2024.09.30.615654; doi: https://doi.org/10.1101/2024.09.30.615654
| Date made available | 26 Jan 2024 |
|---|---|
| Publisher | Zenodo |