Reorganization of functionally connected brain subnetworks in high-functioning autism

A1 Originalartikel i en vetenskaplig tidskrift (referentgranskad)


Interna författare/redaktörer


Publikationens författare: Glerean E, Pan RK, Salmi J, Kujala R, Lahnakoski JM, Roine U, Nummenmaa L, Leppämäki S, Nieminen-von Wendt T, Tani P, Saramäki J, Sams M, Jääskeläinen IP
Publiceringsår: 2016
Tidskrift: Human Brain Mapping
Volym: 37
Nummer: 3
Artikelns första sida, sidnummer: 1066
Artikelns sista sida, sidnummer: 1079


Abstrakt

Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.


Nyckelord

brain connectivity, fMRI

Senast uppdaterad 2019-09-12 vid 02:55