# Target Controllability of Linear Networks

D4 Published development or research report or study

Internal Authors/Editors

Publication Details

List of Authors: Eugen Czeizler, Cristian Gratie, Kai Chiu Wu, Krishna Kanhaiya, Ion Petre

Publisher: Turku Centre for Computer Science (TUCS)

Place: Turku

Publication year: 2016

Start page: 1

End page: 17

ISBN: 978-952-12-3402-6

Abstract

Computational analysis of the structure of intra-cellular molecular interaction networks can suggest novel therapeutic approaches for systemic diseases like cancer. Recent research in the area of network science has shown that network control theory can be a powerful tool in the understanding and manipulation of such biomedical networks. In 2011, Liu et al. developed a polynomial time optimization algorithm for computing the size of the minimal set of nodes controlling a given linear network. In 2014, Gao et al. generalized the problem for target structural control, where the objective is to optimize the size of the minimal set of nodes controlling a given target within a linear network. The working hypothesis in this case is that partial control might be “cheaper” (in the size of the controlling set) than the full control of a network. The authors developed a Greedy algorithm searching for the minimal solution of the structural target control problem, however, no suggestions were given over the actual complexity of the optimization problem. In here we prove that the structural target controllability problem is NP-hard when looking to minimize the number of driven nodes within the network, i.e., the first set of nodes which need to be directly controlled in order to structurally control the target. We also show that the Greedy algorithm provided by Gao et al. in 2014 might in some special cases fail to provide a valid solution, and a subsequent validation step is required. Also, we improve their search algorithm using several heuristics, obtaining in the end up to a 10-fold decrease in running time and also a significant decrease of the size of the minimal solution found by the algorithms.