Photoresponsive cellulose fibers by surface modification with multifunctional cellulose derivatives

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Olga Grigoray, Holger Wondraczek, Elina Heikkilä, Pedro Fardim, Thomas Heinze
Publisher: Elsevier
Publication year: 2014
Journal: Carbohydrate Polymers
Journal acronym: Carbohydr. Polym.
Volume number: 111
Start page: 280
End page: 287


Abstract

Eucalyptus bleached kraft pulp fibers were modified by adsorption of novel bio-based multifunctional cellulose derivatives in order to generate light responsive surfaces. The cellulose derivatives used were decorated with both cationic groups (degree of substitution, DS of 0.34) and photoactive groups (DS of 0.11 and 0.37). The adsorption was studied by UV–vis spectroscopy, surface plasmon resonance (SPR) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The adsorption isotherms followed the Freundlich model and it turned out that the main driving force for the adsorption was electrostatic interaction. Moreover, strong indications for hydrophobic interactions between the fibers and the derivatives and the derivatives themselves were found. ToF-SIMS imaging revealed an even distribution of the derivatives on the fiber surfaces. The modified fibers underwent fast photocrosslinking under UV-irradiation as demonstrated by light absorbance and fluorescence measurements. Thus, our results proved that the modified fibers exhibited light-responsive properties and can potentially be used for the manufacture of smart bio-based materials.


Keywords

Cationic cellulose derivatives, Eucalyptus pulp fibers, Photo-activity, SPR, Surface modification, ToF-SIMS

Last updated on 2019-21-11 at 04:13