Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Jenny Holländer, Natalja Genina, Harri Jukarainen, Mohammad Khajeheian, Ari Rosling, Ermei Mäkilä, Niklas Sandler
Publisher: Elsevier Inc.
Publication year: 2016
Journal: Journal of Pharmaceutical Sciences
Volume number: 105
Issue number: 9
Start page: 2665
End page: 2676
eISSN: 1520-6017


Abstract

The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used as a model drug to prepare drug-loaded poly(ε-caprolactone)–based filaments with 3 different drug contents, namely 5%, 15%, and 30%, by hot-melt extrusion. The filaments were further used to 3D print IUS. The results showed that the morphology and drug solid-state properties of the filaments and 3D prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between the products. Diffusion of the drug from the polymer was the predominant mechanism of drug release, whereas poly(ε-caprolactone) biodegradation had a minor effect. This study shows that 3D printing is an applicable method in the production of drug-containing IUS and can open new ways in the fabrication of controlled release implantable devices.


Keywords

3D printing, controlled drug delivery, hot-melt extrusion, Indomethacin, medical devices, PCL polymer

Last updated on 2019-15-11 at 05:04