Using Optimization, Learning, and Drone Reflexes to Maximize Safety of Swarms of Drones

A4 Konferenspublikationer

Interna författare/redaktörer

Publikationens författare: Amin Majd, Adnan Ashraf, Elena Troubitsyna, Masoud Daneshtalab
Redaktörer: Carlos Coello Coello, Hisao Ishibuchi, Xiaodong Li, Fernando Von Zuben
Publiceringsår: 2018
Förläggare: IEEE
Moderpublikationens namn: 2018 IEEE Congress on Evolutionary Computation (CEC)
Artikelns första sida, sidnummer: 1
Artikelns sista sida, sidnummer: 8
ISBN: 978-1-5090-6018-4
eISBN: 978-1-5090-6017-7


Despite the growing popularity of swarm-based applications of drones, there is still a lack of approaches to maximize the safety of swarms of drones by minimizing the risks of drone collisions. In this paper, we present an approach that uses optimization, learning, and automatic immediate responses (reflexes) of drones to ensure safe operations of swarms of drones. The proposed approach integrates a high-performance dynamic evolutionary algorithm and a reinforcement learning algorithm to generate safe and efficient drone routes and then augments the generated routes with dynamically computed drone reflexes to prevent collisions with unforeseen obstacles in the flying zone. We also present a parallel implementation of the proposed approach and evaluate it against two benchmarks. The results show that the proposed approach maximizes safety and generates highly efficient drone routes.


Senast uppdaterad 2020-13-08 vid 05:50