
Kristian Nybom, Adnan Ashraf and Ivan Porres

A Systematic Mapping Study on Tools for
API Documentation Generation

TUCS Technical Report
No 1180, May, 2017

A Systematic Mapping Study on Tools
for API Documentation Generation
Kristian Nybom, Adnan Ashraf and Ivan Porres

TUCS Technical Report

No 1180, May, 2017

Abstract

Background: Application Programming Interfaces (APIs) are key to software
reuse. Software developers can link functionality and behavior found in other
software with their own software by taking an API into use. However, figuring
out how an API works is usually demanding, and may require that the developers
spend a notable amount of time familiarizing themselves with the API. Good API
documentation is of key importance for simplifying this task.
Objective: To present a comprehensive, unbiased overview of the state-of-the-art
on tools and approaches for API documentation generation.
Method: A systematic mapping study on published tools and approaches that can
be used for generating API documentation, or for assisting in the API documen-
tation process.
Results: 42 studies on API documentation generation tools and approaches an-
alyzed and categorized in a variety of ways. Among other things, the report
presents an overview of what kind of tools have been developed, what kind of
documentation they generate, and what sources the documentation approaches re-
quire.
Conclusion: Out of the identified approaches, many contribute to API documen-
tation in the areas of natural language documentation and code examples. Many
of the approaches contribute to the accuracy and correctness of API documenta-
tion, but also to ease developers understanding of the documentation. Most of the
approaches are automatic, simplifying the API documentation generation notably,
under the assumption that relevant sources for the generation are available. Most
of the API documentation approaches are evaluated either by execution of the ap-
proach followed by analysis of the results, or by empirical evaluation methods.

1 Introduction

Creating software is nowadays largely the process of integrating existing features
and repacking them by writing client code interfacing with Application Program-
ming Interfaces (API) [18, 51]. Thus, APIs are the key to software reuse: they
allow programmers beyond the original developers to use a certain component or
service. Although the official API documentation often is a sufficient source of in-
formation when a developer takes a new API into use, online discussion forums –
most prominently Stack Overflow – often provide more explanatory descriptions
of specific API usages relevant to the developers, and are generally of good quality
[3]. However, although the answers given at Stack Overflow may be syntactically
correct, they are not without problems. In [1] a systematic analysis of the impact
of information resources on the code security was carried out. The main findings
reported were that developers relying only on Stack Overflow produced signif-
icantly less secure code than those relying on official API documentation only,
while developers using API documentation produced significantly less functional
code than those using Stack Overflow. While it is often notably faster and easier
to find relevant information for a specific API from the Internet than from the of-
ficial documentation, such crowd-sourced API knowledge is scattered around the
Internet and disconnected from the official documentation [6].

Without proper tool support, creating and maintaining API documentation is
a demanding task. Whenever the source code for the API is updated, the cor-
responding documentation needs to be updated as well. When code updates are
done frequently, it is not uncommon that the necessary documentation updates are
forgotten, or inadequate [41]. On the other hand, when developers take a new API
into use for their software, finding the correct classes for a specific problem might
be demanding because of the size of the documentation. Easily finding the correct
resources in an API is therefore of importance.

All of the things mentioned above point towards the same need: having proper
tools for creating and maintaining API documentation. With such tools, the expec-
tation is that using the API documentation is notably easier and faster, and helps
developers produce better software more quickly. This report presents a system-
atic mapping study (SMS) on published tools for API documentation generation.
We begin by presenting how the SMS was designed in Section 2. In Section 3,
we present the main findings of the SMS. In this Section we focus on answering
the research questions, as defined in Section 2. Section 4 discusses the threats of
validity of this study, and the report is concluded in Section 5.

2 The Systematic Mapping Study

This section presents the main points of the protocol created for the systematic
mapping study. The protocol itself is useful for replicability, as it gives a step-by-

1

step description of how the study was performed. More specifically, it explains
the goals for the research, the criteria for searching for original papers potentially
relevant to the study, the criteria for including original papers in the study, how
data was extracted from the original papers, and how the extracted data was syn-
thesized.

In the remainder of this report, we refer to approaches rather than to tools,
since the word tool can be interpreted as a standalone application, but this report
is not limited to those. We also consider e.g. plug-ins to SDK’s and other forms
of approaches that can assist in API documentation generation. However, we do
not take into consideration API documentation guidelines and similar.

2.1 Research Questions
The research questions (RQ) are as follows:

RQ1: What approaches exist for creating new and improving existing API docu-
mentation?

RQ2: What are the sources for API documentation?

RQ3: How do the approaches contribute to API documentation?

RQ4: What are the quality properties of the approaches?

RQ5: How are the documentation approaches evaluated?

The first question (RQ1) is concerned with different ways of either creating
new or improving existing API documentation. This RQ does not limit out ap-
proaches that may provide some kind of supplementary information regarding
existing API documentation, which later on can be used for improving that doc-
umentation. In order to get a better understanding of the published approaches,
RQ2 is aimed at looking at the sources used by the approaches. We believe this
is a relevant research question because it provides information about the sources
that need to be available and preferably reliable, in order to obtain the expected
results which are studied in RQ3. RQ4 in turn aims at finding out why and how
the identified approaches are useful in some way. The fifth and last RQ is con-
cerned with whether and how the approaches have been evaluated, i.e., whether
evidence is provided for improvements in API documentation.

Based on the RQs, the population, intervention, comparison, outcomes, and
context (PICOC) is presented in Table 1.

2.2 Search Strategy for Primary Studies
This section presents our search strategy. It is based on the Systematic Literature
Review (SLR) guidelines in [26, 47].

2

Table 1: PICOC
Aspect Value
Population (P) Software application developers
Intervention (I) Approaches for creating useful API reference docu-

mentation
Comparison (C) Creating API documentation without design
Outcomes (O) An overview of approaches for creating and improv-

ing API reference documentation, and of their respec-
tive significance

Context (C) Module, component, and service integration with
client code

2.3 Search Terms

Table 2 lists the most important search terms used when searching for original
papers for this study. The search terms are derived from the research questions
and the PICOC in section 2.1.

Table 2: Search terms with alternate spellings
Term Alternate Spelling
API* API, APIs
Application Programming Interface* Application Programming Interface,

Application Programming Interfaces
Librar* Library, Libraries
Document* Document, Documentation
Algorithm* Algorithm, Algorithms
Approach* Approach, Approaches
Method* Method, Methods
Generat* Generate, Generation
Autom* Automatic, Automation, Automate
Evaluat* Evaluate, Evaluation
Assess* Assess, Assessment
Experiment* Experiment, Experimental, Experimentation
Test * Test, Testing
Empirical* None

2.4 Search Strings

The search terms listed in Table 2 were combined into search strings for use in the
digital libraries. The general search strings are listed in Table 3.

3

Table 3: General search strings
No. Search String
1 (API OR ”Application Programming Interface*” OR Librar*) AND

Document* AND (algorithm* OR approach* OR method* OR generat* OR
creat* OR automat* OR evaluat* OR assess* OR study Or measur* OR
experiment* OR test* OR empirical*)

2 (API OR ”Application Programming Interface*” OR Librar*) AND
Document* AND (algorithm* OR approach* OR method* OR generat* OR
creat* OR automat*) AND (evaluat* OR assess* OR study OR measur* OR
experiment* OR test* OR empirical*)

2.5 Databases
The search strings listed in Table 3 were applied in the following digital libraries:

• IEEE Xplore

• ACM Digital library

• ScienceDirect

• SpringerLink

Since the digital libraries have different possibilities for defining search strings,
they were customized to every digital library. From the collected results, dupli-
cates were removed.

2.6 Study Inclusion Criteria
The inclusion criteria for primary studies were as follows:

• Written in English AND

• Published in a peer-reviewed journal, conference, or workshop of computer
science, computer engineering, or software engineering AND

• Describing any of the following:

– Methods or approaches for assisting in documentation search OR

– Documentation approach or algorithm OR

– Assessment or evaluation method or metrics for documentation

If several papers presented the same documentation approach, only the most
recent was included, unless the contributions of those papers were different.

4

2.7 Title and Abstract Level Screening
In this phase, the inclusion criteria in Section 2.6 was applied to publication ti-
tles and abstracts. To minimize researcher bias, two researchers independently
analyzed the search results. Afterwards, the results were compared and any dis-
agreements were resolved through discussions. The filtered list of papers from
this phase was used as input for the following phase. Due to the large number
of papers found, we began by screening the titles and rejecting papers not fulfill-
ing the inclusion criteria. After the title screening, we continued by screening the
abstracts of the accepted publications. As reported in [31], we believe that this
approach does not compromise our results.

2.8 Full Text Level Screening
In this phase, the remaining papers were analyzed based on their full text. Again,
to minimize bias, two researchers applied the inclusion criteria in Section 2.6
on the full text. The results were compared and disagreements were resolved
through discussions. The researchers also documented a reason for each excluded
study [45].

2.9 Study Quality Assessment Checklist and Procedure
The selected papers were assessed based on their quality. One researcher assessed
the quality of the selected papers. Any papers not meeting the minimum quality
requirements were excluded from the set of primary studies. The output from this
phase was the final set of papers. Again, since only one researcher performed the
quality assessment, this is another threat to the validity.

Table 4 presents the checklist for study quality assessment. For each question
in the checklist, a three-level, numeric scale was used [45]. The levels were: yes (2
points), partial (1 point), and no (0 point). Based on the checklist and the numeric
scale, each study could score a maximum of 36 and a minimum of 0 points. We
used the first quartile (36/4 = 9) as the cutoff point for the inclusion of studies.
Therefore, if a study scored less than 9 points, it was excluded due to its lack of
quality with respect to this study. The researcher documented the obtained score
of each included/excluded study. We point out that the quality we assessed was in
terms of relevance for this study, i.e., a paper excluded in this phase could in fact
be a very good paper but simply not relevant for this study, or not having enough
contributions for this study, and was therefore excluded.

2.10 Data Extraction Strategy
For extracting data from the primary studies, we used the form shown in Table 5.
One researcher extracted the information from the papers, and the extracted data

5

Table 4: Study quality assessment checklist, partially adopted from [45]
Question
Theoretical contribution
1 Is at least one of the research questions addressed?
2 Was the study designed to address some of the research questions?
3 Is a problem description for the research explicitly provided?
4 Is the problem description for the research supported by references to

other work?
5 Are the contributions of the research clearly described?
6 Are the assumptions, if any, clearly stated?
7 Is there sufficient evidence to support the claims of the research?
8 Are the insights/lessons learned/findings of the study clearly described?
Experimental evaluation
9 Is the research design, or the way the research was organized, clearly

described?
10 Is a prototype, simulation, or empirical study presented?
11 Is the experimental setup clearly described?
12 Are results from multiple different experiments included?
13 Are results from multiple runs of each experiment included?
14 Are the experimental results compared with other approaches?
15 Are negative results, if any, presented?
16 Is the statistical significance of the results assessed?
17 Are the limitations or threats to validity clearly stated?
18 Are the links between data, interpretation and conclusions clear?

was then used for analysis. The data that was extracted was such data that it would
answer the research questions in this report.

2.11 Synthesis of the Extracted Data
The extracted data from the papers was used for analysis, in order to obtain a
high-level view of different aspects related to tools for API documentation. The
papers were categorized in different ways, and collective results were extracted.
The results from this phase are presented in Section 3.

3 Results
In this section we present the main findings of this study. The search strings used
included words, such as ”Library” and ”Document”, which are used in many other
contexts than API documentation. We found searching for papers related to API
documentation to be difficult because of this, because the wording used in papers

6

Table 5: Data extraction form
Data item Value Additional

notes
General
Data extractor name
Data extraction date
Study identifier (S1, S2, S3, ...)
Bibliographic reference (title, authors, year, jour-
nal/conference/workshop name)
Author affiliations and countries
Publication type (journal, conference, or workshop)
API documentation related
(RQ1) Type of approach (e.g. tool, plugin, web-based)
(RQ1) Documentation generation method (automatic,
sem-automatic, data mining, manual)
(RQ2) Source for documentation generation (e.g.
source code, user activity, free text, formal specifica-
tions)
(RQ3) Type of documentation generated (e.g. code
examples, free text, formal specifications)
(RQ4) Attributes/usability of generated documenta-
tion (e.g. improved development time, reduced infor-
mation finding time, improved understanding of com-
plex API’s)
(RQ5) Evaluation method (analytical, empirical, sim-
ulation, execution of approach)

varies, e.g. some authors refer to software libraries, while others to APIs. As can
be seen in Table 6, which lists the number of papers to be processed in each phase,
the initial search therefore produced a huge number of papers. The majority of the
papers found in the initial search were related to real physical libraries, and doc-
umentation in such libraries. Nevertheless, after the time consuming screening,
only 95 papers out of the original 3076 papers were left. At this point, based on
the papers found, we decided to slightly modify the set of research questions in
order to keep the report more focused. In effect, we removed some research ques-
tions concerning API documentation usability and approaches that improve that
usability, which we felt would be difficult to answer based on the set of primary
studies. This is the main reason to the big difference in the number of papers left
after the full text screening (95 papers) and the quality assessment (42 papers).
Had we focused on this topic from the beginning, the total number of papers to
process, specifically in the intermediate phases, would have been smaller. Table
7 lists the final set of primary studies included, the authors of the studies and the
corresponding publication years.

7

Table 6: Number of papers in each phase of the paper search and screening
Phase Number of papers
Initial search results 3076
After removing duplicates 1899
After title and abstract screening 122
After full text screening 95
After quality assessment 42

Before moving on to the individual research questions, we note that the ma-
jority of the identified tools and approaches for supporting API documentation
have been published as conference papers, while only a small number of them as
journal papers. Figure 1 illustrates this distribution.

Conference,

35

Journal, 7

Figure 1: Distribution and paper count of publication forums

From Figure 2, we can see that this topic has been interesting for the scientific
community ever since the beginning of the millennium. The research activity was
not that high in the beginning of the 2000’s, but since 2007, many researchers
have actively been working on better tools for API documentation. We note that
the number of papers in 2016, as illustrated in Figure 2, may be too small, since
the initial paper search was done in the beginning of December 2016. There is
therefore a small probability that a few papers from 2016 were not included in
this study.

In the following, we go through each of the research questions in this report
separately. However, we do not go through them in incremental order, but instead,
we go through them in the order that we feel might be the most interesting to the
reader.

8

Table 7: Primary studies included
Identifier Authors, year Reference
S1 Acharya et al., 2007 [2]
S2 Bruch, Mezini, and Monperrus, 2010 [4]
S3 Buse and Weimer, 2008 [5]
S4 Chen and Zhang, 2014 [6]
S5 Dagenais and Robillard, 2012 [7]
S6 Dagenais and Robillard, 2014 [8]
S7 Dekel and Herbsleb, 2009 [9]
S8 Eisenberg et al., 2010 [10]
S9 Eriksson, Berglund, and Nevalainen, 2002 [11]
S10 Flatt, Barzilay, and Findler, 2009 [12]
S11 Forward, Lethbridge, and Deugo, 2007 [13]
S12 Gao and Wei, 2013 [14]
S13 Guerrouj, Bourque, and Rigby, 2015 [15]
S14 Henkel, Reichenbach, and Diwan, 2008 [17]
S15 Henkel, Reichenbach, and Diwan, 2007 [16]
S16 Heydarnoori et al., 2012 [19]
S17 Hoffman and Strooper, 2003 [20]
S18 Hoffmann, Fogarty, and Weld, 2007 [21]
S19 Horie and Chiba, 2009 [22]
S20 Horie and Chiba, 2010 [23]
S21 Jiang et al., 2007 [24]
S22 Kim et al., 2013 [25]
S23 Leslie, 2002 [27]
S24 Lo et al., 2012 [28]
S25 Mar, Wu, and Jiau, 2011 [29]
S26 Marlow, 2002 [30]
S27 McMillan, Poshyvanyk, and Grechanik, 2010 [32]
S28 Montandon et al., 2013 [33]
S29 Moritz et al., 2013 [34]
S30 Horie and Chiba, 2015 [35]
S31 Pandita et al., 2012 [36]
S32 Petrosyan, Robillard, and Mori, 2015 [37]
S33 Pierce and Tilley, 2002 [38]
S34 Schreck, Dallmeier, and Zimmermann, 2007 [39]
S35 Souza, Campos, and A. Maia, 2014 [40]
S36 Stylos et al., 2009 [42]
S37 Subramanian, Inozemtseva, and Holmes, 2014 [43]
S38 Treude and Robillard, 2016 [44]
S39 Williams and Hollingsworth, 2005 [46]
S40 Wu, Mar, and Jiau, 2010 [48]
S41 Zhong and Su, 2013 [49]
S42 Zhong et al., 2009 [50]

9

0

1

2

3

4

5

6

7

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

P
u

b
li

ca
ti

o
n

 C
o

u
n

t

Year

Figure 2: Distribution of publication years

3.1 Contributions to API documentation (RQ3)

Figure 3 illustrates the distribution of how the different API documentation ap-
proaches contribute to API documentation. More than half of the approaches con-
tribute by generating new documentation in some format, while many approaches
contribute by generating output that help the developers in using API documenta-
tion (documentation support). Two approaches contribute by identifying problems
in existing documentation, and two approaches produce information that can be of
assistance when manually creating documentation. Table 8 gives a more detailed
list of what the approaches generate. From the table, it is evident that natural lan-
guage (NL) documentation along with code examples and templates are the most
popular targets for documentation generation. These targets for documentation
generation is understandable, since erroneous, inadequate or lacking descriptions
and code examples are common reasons for many API documents being difficult
to understand and use (see e.g. [29]).

3.2 Sources for API documentation (RQ2)

While the output from API documentation approaches is of great interest, it is
equally interesting to look at what sources the documentation approaches rely
on. This is simply because one cannot expect to get the desired output, if the
source is not available. With this in mind, Table 9 provides a detailed list of the
sources required by the approaches for assisting in API documentation genera-
tion. An interesting thing to note is that 15 of the documentation approaches use
API documentation and tutorials as input, i.e., from existing documentation new
documentation is generated.

10

New documentation, 28

Input to documentation, 2

Identification of problems

in documentation, 2

Documentation support,

10

Figure 3: Distribution of contributions to API documentation by the approaches.

Table 8: Output from API documentation generation
Output Count Primary Studies
NL Documentation 11 S3, S4, S10, S11, S13, S19, S20,

S23, S26, S35, S38
Examples & Templates 9 S16, S17, S22, S25, S27, S28,

S29, S32, S36
Specifications & Rules 6 S1, S2, S12, S24, S39, S42
Recommendations & Identifications 5 S6, S14, S30, S36, S41
Graphical Representation 4 S9, S21, S33, S40
Visual & Navigational Enhancement 3 S7, S8, S18
Formal Specification 2 S15, S31
Improved Information 1 S5
Analysis 1 S34

3.3 Properties of Documentation Approaches (RQ4)

As can be easily understood, the different approaches for API document genera-
tion tackle the documentation problem from different perspectives. Consequently,
they contribute to API documentation in different ways. Table 10 lists the prop-
erties that the corresponding API documentation approaches have. We point out
that not all of the properties listed below are explicitly mentioned in the primary
studies. The authors have in a few cases taken the liberty of deducing the proper-
ties on their own based on the discussions in the studies, and the properties have
additionally been classified into the groups listed in the table.

As can be seen from Table 10, the majority of the approaches contribute to
the accuracy and correctness of API documentation, and to the understandabil-

11

Table 9: Sources for API documentation generation
Source Count Primary Studies
API Documentation & Tutorials 15 S4, S5, S6, S7, S10, S13, S14, S18,

S27, S30, S31, S32, S34, S41, S42
Source Code & Examples 10 S2, S5, S8, S9, S15, S33, S37, S39,

S40, S41
Code Comments & Annotations 8 S9, S11, S13, S19, S20, S23, S26,

S33
Traces & API calls 7 S1, S3, S16, S24, S27, S28, S29
Online Information 6 S4, S17, S18, S22, S35, S38
Databases & Search Engines 2 S8, S25
API Usage & Usage Scenarios 2 S21, S36
Error descriptions 1 S12
Test cases 1 S15
Manual Input 1 S25

ity of them. This observation suggests that these properties are the most lacking
in current API documentation. Many studies also contribute to the accessibility
(e.g. information finding) and the API documentation structure, which is repeat-
edly mentioned in studies on API documentation to be a current problem. API
documentation maintenance and generation are also enhanced by quite many ap-
proaches, which is also understandable, since both maintenance and generation
can be time consuming and be error prone, specifically in the context of large
APIs. We note that the Productivity class is a highly undescriptive one, since it is
largely a combination of the other classes listed in the table. However, improved
productivity as a result of improved API documentation is likely one of the most
desirable goals. We have therefore decided to include this class of properties, but
it should be noted that most of the other classes listed in Table 10 should indirectly
contribute to improved productivity as well.

3.4 Approaches for API documentation (RQ1)
Figure 4 shows the distribution of the different types of tools reported in the pri-
mary studies. Most approaches were designed as tools, but a few plugins and
web-based tools were also reported. We point out here, that not all primary studies
presented tools as such. Some studies described conceptual approaches or strate-
gies for API documentation, without specifically describing tools. An attempt at
classifying the approach taken in the different studies is illustrated in Figure 5. In
the figure, the algorithm class refers to a contribution where a step-by-step algo-
rithm is given for contributing to API documentation. The class technique refers to
a higher level description, without going into every detail. The class conceptual
approach refers to a presentation of a general approach on how to support API

12

Table 10: Properties of API documentation approaches
Properties Count Primary Studies
Accuracy & Correctness 9 S3, S5, S14, S15, S17, S20, S24,

S26, S35
Understanding 9 S7, S14, S21, S25, S34, S37, S38,

S39, S40
Accessibility & Structure 7 S8, S18, S19, S20, S26, S27, S36
Maintenance & Generation 6 S6, S7, S14, S26, S41, S42
Reusabilitiy 4 S1, S27, S31, S35
Learnability 3 S13, S28, S29
Productivity 3 S16, S22, S40
Awareness 2 S11, S12
Completeness 2 S14, S34

documentation generation. This classification is rather coarse, and is not com-
pletely accurate, since some studies were described as combination of algorithms
and high-level techniques. However, it provides insight into the level of detail and
the completeness of the presentations given in the studies.

Tool, 23

Plugin, 3

Web-based

tool, 3

Figure 4: Distribution of different types of tools.

3.5 Evaluation Methods (RQ5)
The evaluation of API documentation approaches is probably as important as the
approach itself. Without an evaluation, there is no evidence on whether the ap-

13

Conceptual

approach,

13

Technique,

21

Algorithm,

8

Figure 5: The level of detail given for the API documentation in the studies.

proach actually contributes to the API documentation as intended, nor if the re-
sult of the approach makes any difference. Somewhat surprisingly, out of the 42
primary studies, a total of 9 offered no evaluation of any kind. It is however pos-
sible that the evaluation of the approaches have been done in studies published
afterwards, but which are not included in this SMS. Some studies evaluated the
approaches with several evaluation methods, and coincidentally, the total number
of evaluations is the same as the number of primary studies in this SMS.

Figure 6 shows the distribution of the types of evaluation methods used in
evaluating the approaches. As can be seen, execution of the proposed approach
and empirical evaluation methods dominate in selection of evaluation methods
among the authors. The class Review refers to the approaches being reviewed by
experts, while the class Other is a combination of the other evaluation methods.

4 Threats to Validity
A threat to the validity of this report is that the quality assessment and data ex-
traction was done by one author only. This means that the results may be slightly
biased, and that some facts reported in the primary studies may have been misun-
derstood, or missed.

Another threat to the validity stems from the difficulty in searching for original
papers on API documentation. As mentioned in Section 3, the search resulted in
more than 3000 papers, primarily because the search terms included words such
as ”document” and ”library”. Although these words are relevant in the context
of API documentation, they are even more relevant in the context of physical

14

Execution, 19

Empirical, 14

Analytical, 5

Review, 2
Other, 2

Figure 6: Distribution of evaluation methods for the approaches.

libraries, and performing the title and abstract screening on this amount of papers
may have resulted in some papers being filtered out accidentally, even though the
screening was performed by two researchers.

Finally, this report is based on publications within the scientific community.
There may therefore exist API documentation approaches that are not included in
this report, if they have not been presented and studied in scientific publications.

5 Conclusions

In this report, we presented a systematic mapping study on tools and approaches
for API documentation generation. The systematic mapping study itself was also
presented for replicability. Since the beginning of the millennium, there have
been many contributions to this topic, and many approaches have been developed.
We identified 42 studies on this topic, which we analyzed based on the research
questions detailed in Section 2.

Out of the identified approahces, many contribute to API documentation in
the areas of NL documentation and code examples. This suggests that current
API documentation is in general lacking in these, or are at least in need for tool
support. Many of the approaches were designed to contribute to the accuracy and
correctness of API documentation, but also to ease developers understanding of
the documentation. Most of the approaches were automatic, simplifying the API
documentation generation notably, under the assumption that relevant sources for
the generation are availabe. Most of the API documentation approaches were eval-
uated either by execution of the approach followed by analysis of the results, or by
empirical evaluation methods. Some papers also provided extensive evaluations,
using several different evaluation methods.

15

With this study, we hope to give interested readers an overview of what API
documentation approaches have been published and of their properties. However,
we note that some API documentation approaches may not be included in this re-
port, since not all such approaches are published within the scientific community.
Instead, they may have been released as ready products, but since this report was
based on published papers, such approaches are not included in this study.

Acknowledgements This work has been partially supported by the Dimecc Need
for Speed program and funded by Tekes, the Finnish Funding Agency for Tech-
nology and Innovation.

References
[1] Y. Acar et al. “You Get Where You’re Looking for: The Impact of Infor-

mation Sources on Code Security”. In: 2016 IEEE Symposium on Security
and Privacy (SP). 2016, pp. 289–305. DOI: 10.1109/SP.2016.25.

[2] Mithun Acharya et al. “Mining API Patterns As Partial Orders from Source
Code: From Usage Scenarios to Specifications”. In: Proceedings of the the
6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software Engineer-
ing. ESEC-FSE ’07. Dubrovnik, Croatia: ACM, 2007, pp. 25–34. ISBN:
978-1-59593-811-4. DOI: 10.1145/1287624.1287630. URL: http:
//doi.acm.org/10.1145/1287624.1287630.

[3] J. Andersson et al. “A Study of Demand-Driven Documentation in Two
Open Source Projects”. In: 2015 48th Hawaii International Conference on
System Sciences. 2015, pp. 5271–5279. DOI: 10.1109/HICSS.2015.
621.

[4] M. Bruch, M. Mezini, and M. Monperrus. “Mining subclassing directives
to improve framework reuse”. In: 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). 2010, pp. 141–150. DOI: 10.
1109/MSR.2010.5463347.

[5] Raymond P.L. Buse and Westley R. Weimer. “Automatic Documentation
Inference for Exceptions”. In: Proceedings of the 2008 International Sym-
posium on Software Testing and Analysis. ISSTA ’08. Seattle, WA, USA:
ACM, 2008, pp. 273–282. ISBN: 978-1-60558-050-0. DOI: 10.1145/
1390630.1390664. URL: http://doi.acm.org/10.1145/
1390630.1390664.

16

[6] Cong Chen and Kang Zhang. “Who Asked What: Integrating Crowdsourced
FAQs into API Documentation”. In: Companion Proceedings of the 36th
International Conference on Software Engineering. ICSE Companion 2014.
Hyderabad, India: ACM, 2014, pp. 456–459. ISBN: 978-1-4503-2768-8.
DOI: 10.1145/2591062.2591128. URL: http://doi.acm.
org/10.1145/2591062.2591128.

[7] B. Dagenais and M. P. Robillard. “Recovering traceability links between an
API and its learning resources”. In: 2012 34th International Conference on
Software Engineering (ICSE). 2012, pp. 47–57. DOI: 10.1109/ICSE.
2012.6227207.

[8] B. Dagenais and M. P. Robillard. “Using Traceability Links to Recommend
Adaptive Changes for Documentation Evolution”. In: IEEE Transactions
on Software Engineering 40.11 (2014), pp. 1126–1146. ISSN: 0098-5589.
DOI: 10.1109/TSE.2014.2347969.

[9] U. Dekel and J. D. Herbsleb. “Improving API documentation usability with
knowledge pushing”. In: 2009 IEEE 31st International Conference on Soft-
ware Engineering. 2009, pp. 320–330. DOI: 10.1109/ICSE.2009.
5070532.

[10] D. S. Eisenberg et al. “Using Association Metrics to Help Users Navigate
API Documentation”. In: 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing. 2010, pp. 23–30. DOI: 10.1109/VLHCC.
2010.13.

[11] Henrik Eriksson, Erik Berglund, and Peter Nevalainen. “Using Knowledge
Engineering Support for a Java Documentation Viewer”. In: Proceedings of
the 14th International Conference on Software Engineering and Knowledge
Engineering. SEKE ’02. Ischia, Italy: ACM, 2002, pp. 57–64. ISBN: 1-
58113-556-4. DOI: 10.1145/568760.568772. URL: http://doi.
acm.org/10.1145/568760.568772.

[12] Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. “Scribble: Clos-
ing the Book on Ad Hoc Documentation Tools”. In: SIGPLAN Not. 44.9
(Aug. 2009), pp. 109–120. ISSN: 0362-1340. DOI: 10.1145/1631687.
1596569. URL: http://doi.acm.org/10.1145/1631687.
1596569.

[13] A. Forward, T. Lethbridge, and D. Deugo. “CodeSnippets Plug-in to Eclipse:
Introducing Web 2.0 Tagging to Improve Software Developer Recall”. In:
5th ACIS International Conference on Software Engineering Research, Man-
agement Applications (SERA 2007). 2007, pp. 451–460. DOI: 10.1109/
SERA.2007.62.

17

[14] C. Gao and J. Wei. “Generating Open API Usage Rule from Error De-
scriptions”. In: 2013 IEEE Seventh International Symposium on Service-
Oriented System Engineering. 2013, pp. 245–253. DOI: 10.1109/SOSE.
2013.32.

[15] L. Guerrouj, D. Bourque, and P. C. Rigby. “Leveraging Informal Documen-
tation to Summarize Classes and Methods in Context”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 2. 2015,
pp. 639–642. DOI: 10.1109/ICSE.2015.212.

[16] J. Henkel, C. Reichenbach, and A. Diwan. “Discovering Documentation for
Java Container Classes”. In: IEEE Transactions on Software Engineering
33.8 (2007), pp. 526–543. ISSN: 0098-5589. DOI: 10.1109/TSE.2007.
70705.

[17] Johannes Henkel, Christoph Reichenbach, and Amer Diwan. “Developing
and Debugging Algebraic Specifications for Java Classes”. In: ACM Trans.
Softw. Eng. Methodol. 17.3 (June 2008), 14:1–14:37. ISSN: 1049-331X.
DOI: 10.1145/1363102.1363105. URL: http://doi.acm.
org/10.1145/1363102.1363105.

[18] Michi Henning. “API Design Matters”. In: ACM Queue 5.4 (May 2007),
pp. 24–36. ISSN: 1542-7730. DOI: 10 . 1145 / 1255421 . 1255422.
URL: http://doi.acm.org/10.1145/1255421.1255422.

[19] A. Heydarnoori et al. “Two Studies of Framework-Usage Templates Ex-
tracted from Dynamic Traces”. In: IEEE Transactions on Software Engi-
neering 38.6 (2012), pp. 1464–1487. ISSN: 0098-5589. DOI: 10.1109/
TSE.2011.77.

[20] Daniel Hoffman and Paul Strooper. “API documentation with executable
examples”. In: Journal of Systems and Software 66.2 (2003), pp. 143 –156.
ISSN: 0164-1212. DOI: http://dx.doi.org/10.1016/S0164-
1212(02)00055-9. URL: http://www.sciencedirect.com/
science/article/pii/S0164121202000559.

[21] Raphael Hoffmann, James Fogarty, and Daniel S. Weld. “Assieme: Finding
and Leveraging Implicit References in a Web Search Interface for Program-
mers”. In: Proceedings of the 20th Annual ACM Symposium on User In-
terface Software and Technology. UIST ’07. Newport, Rhode Island, USA:
ACM, 2007, pp. 13–22. ISBN: 978-1-59593-679-0. DOI: 10.1145/1294211.
1294216. URL: http://doi.acm.org/10.1145/1294211.
1294216.

[22] Michihiro Horie and Shigeru Chiba. “Aspect-oriented Generation of the
API Documentation for AspectJ”. In: Proceedings of the 4th Workshop on
Domain-specific Aspect Languages. DSAL ’09. Charlottesville, Virginia,
USA: ACM, 2009, pp. 15–20. ISBN: 978-1-60558-455-3. DOI: 10.1145/

18

1509307.1509313. URL: http://doi.acm.org/10.1145/
1509307.1509313.

[23] Michihiro Horie and Shigeru Chiba. “Tool Support for Crosscutting Con-
cerns of API Documentation”. In: Proceedings of the 9th International
Conference on Aspect-Oriented Software Development. AOSD ’10. Rennes
and Saint-Malo, France: ACM, 2010, pp. 97–108. ISBN: 978-1-60558-958-
9. DOI: 10.1145/1739230.1739242. URL: http://doi.acm.
org/10.1145/1739230.1739242.

[24] J. Jiang et al. “Constructing Usage Scenarios for API Redocumentation”.
In: 15th IEEE International Conference on Program Comprehension (ICPC
’07). 2007, pp. 259–264. DOI: 10.1109/ICPC.2007.16.

[25] Jinhan Kim et al. “Enriching Documents with Examples: A Corpus Min-
ing Approach”. In: ACM Trans. Inf. Syst. 31.1 (Jan. 2013), 1:1–1:27. ISSN:
1046-8188. DOI: 10.1145/2414782.2414783. URL: http://
doi.acm.org/10.1145/2414782.2414783.

[26] B. Kitchenham and S Charters. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering (Version 2.3). Tech. rep. EBSE-
2007-01. Keele University and University of Durham, 2007.

[27] Donald M. Leslie. “Using Javadoc and XML to Produce API Reference
Documentation”. In: Proceedings of the 20th Annual International Confer-
ence on Computer Documentation. SIGDOC ’02. Toronto, Ontario, Canada:
ACM, 2002, pp. 104–109. ISBN: 1-58113-543-2. DOI: 10.1145/584955.
584971. URL: http : / / doi . acm . org / 10 . 1145 / 584955 .
584971.

[28] David Lo et al. “Mining quantified temporal rules: Formalism, algorithms,
and evaluation”. In: Science of Computer Programming 77.6 (2012). (1)
Coordination 2009 (2) {WCRE} 2009, pp. 743 –759. ISSN: 0167-6423.
DOI: http://dx.doi.org/10.1016/j.scico.2010.10.003.
URL: http://www.sciencedirect.com/science/article/
pii/S0167642310001875.

[29] L. W. Mar, Y. C. Wu, and H. C. Jiau. “Recommending Proper API Code Ex-
amples for Documentation Purpose”. In: 2011 18th Asia-Pacific Software
Engineering Conference. 2011, pp. 331–338. DOI: 10.1109/APSEC.
2011.18.

[30] Simon Marlow. “Haddock, a Haskell Documentation Tool”. In: Proceed-
ings of the 2002 ACM SIGPLAN Workshop on Haskell. Haskell ’02. Pitts-
burgh, Pennsylvania: ACM, 2002, pp. 78–89. ISBN: 1-58113-605-6. DOI:
10.1145/581690.581697. URL: http://doi.acm.org/10.
1145/581690.581697.

19

[31] F.J. Mateen et al. “Titles versus titles and abstracts for initial screening
of articles for systematic reviews”. In: Clinical Epidemiology 5 (2013),
pp. 89–95.

[32] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. “Recommend-
ing Source Code Examples via API Call Usages and Documentation”. In:
Proceedings of the 2Nd International Workshop on Recommendation Sys-
tems for Software Engineering. RSSE ’10. Cape Town, South Africa: ACM,
2010, pp. 21–25. ISBN: 978-1-60558-974-9. DOI: 10.1145/1808920.
1808925. URL: http://doi.acm.org/10.1145/1808920.
1808925.

[33] J. E. Montandon et al. “Documenting APIs with examples: Lessons learned
with the APIMiner platform”. In: 2013 20th Working Conference on Re-
verse Engineering (WCRE). 2013, pp. 401–408. DOI: 10.1109/WCRE.
2013.6671315.

[34] E. Moritz et al. “ExPort: Detecting and visualizing API usages in large
source code repositories”. In: 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 2013, pp. 646–651. DOI:
10.1109/ASE.2013.6693127.

[35] R. Pandita et al. “Discovering likely mappings between APIs using text
mining”. In: 2015 IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM). 2015, pp. 231–240. DOI: 10.
1109/SCAM.2015.7335419.

[36] R. Pandita et al. “Inferring method specifications from natural language
API descriptions”. In: 2012 34th International Conference on Software En-
gineering (ICSE). 2012, pp. 815–825. DOI: 10.1109/ICSE.2012.
6227137.

[37] G. Petrosyan, M. P. Robillard, and R. De Mori. “Discovering Informa-
tion Explaining API Types Using Text Classification”. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering. Vol. 1. 2015,
pp. 869–879. DOI: 10.1109/ICSE.2015.97.

[38] Robert Pierce and Scott Tilley. “Automatically Connecting Documenta-
tion to Code with Rose”. In: Proceedings of the 20th Annual International
Conference on Computer Documentation. SIGDOC ’02. Toronto, Ontario,
Canada: ACM, 2002, pp. 157–163. ISBN: 1-58113-543-2. DOI: 10.1145/
584955 . 584979. URL: http : / / doi . acm . org / 10 . 1145 /
584955.584979.

[39] Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. “How Doc-
umentation Evolves over Time”. In: Ninth International Workshop on Prin-
ciples of Software Evolution: In Conjunction with the 6th ESEC/FSE Joint
Meeting. IWPSE ’07. Dubrovnik, Croatia: ACM, 2007, pp. 4–10. ISBN:

20

978-1-59593-722-3. DOI: 10.1145/1294948.1294952. URL: http:
//doi.acm.org/10.1145/1294948.1294952.

[40] L. B. L. d. Souza, E. C. Campos, and M. d. A. Maia. “On the Extraction
of Cookbooks for APIs from the Crowd Knowledge”. In: 2014 Brazilian
Symposium on Software Engineering. 2014, pp. 21–30. DOI: 10.1109/
SBES.2014.15.

[41] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira.
“A Study of the Documentation Essential to Software Maintenance”. In:
Proceedings of the 23rd Annual International Conference on Design of
Communication: Documenting &Amp; Designing for Pervasive Informa-
tion. SIGDOC ’05. Coventry, United Kingdom: ACM, 2005, pp. 68–75.
ISBN: 1-59593-175-9. DOI: 10.1145/1085313.1085331. URL: http:
//doi.acm.org/10.1145/1085313.1085331.

[42] J. Stylos et al. “Improving API documentation using API usage informa-
tion”. In: 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 2009, pp. 119–126. DOI: 10 . 1109 / VLHCC .
2009.5295283.

[43] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. “Live API
Documentation”. In: Proceedings of the 36th International Conference on
Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 643–
652. ISBN: 978-1-4503-2756-5. DOI: 10.1145/2568225.2568313.
URL: http://doi.acm.org/10.1145/2568225.2568313.

[44] Christoph Treude and Martin P. Robillard. “Augmenting API Documenta-
tion with Insights from Stack Overflow”. In: Proceedings of the 38th In-
ternational Conference on Software Engineering. ICSE ’16. Austin, Texas:
ACM, 2016, pp. 392–403. ISBN: 978-1-4503-3900-1. DOI: 10.1145/
2884781.2884800. URL: http://doi.acm.org/10.1145/
2884781.2884800.

[45] Muhammad Usman et al. “Effort Estimation in Agile Software Develop-
ment: A Systematic Literature Review”. In: Proceedings of the 10th Inter-
national Conference on Predictive Models in Software Engineering. PROMISE
’14. Turin, Italy: ACM, 2014, pp. 82–91. ISBN: 978-1-4503-2898-2. DOI:
10.1145/2639490.2639503. URL: http://doi.acm.org/10.
1145/2639490.2639503.

[46] Chadd C. Williams and Jeffrey K. Hollingsworth. “Recovering System Spe-
cific Rules from Software Repositories”. In: SIGSOFT Softw. Eng. Notes
30.4 (May 2005), pp. 1–5. ISSN: 0163-5948. DOI: 10.1145/1082983.
1083144. URL: http://doi.acm.org/10.1145/1082983.
1083144.

21

[47] Claes Wohlin et al. Experimentation in Software Engineering. 1st ed. Springer-
Verlag Berlin Heidelberg, 2012. ISBN: 978-3-642-29044-2. DOI: 10.1007/
978-3-642-29044-2.

[48] Y. C. Wu, L. W. Mar, and H. C. Jiau. “CoDocent: Support API Usage
with Code Example and API Documentation”. In: 2010 Fifth International
Conference on Software Engineering Advances. 2010, pp. 135–140. DOI:
10.1109/ICSEA.2010.28.

[49] Hao Zhong and Zhendong Su. “Detecting API Documentation Errors”. In:
SIGPLAN Not. 48.10 (Oct. 2013), pp. 803–816. ISSN: 0362-1340. DOI:
10.1145/2544173.2509523. URL: http://doi.acm.org/
10.1145/2544173.2509523.

[50] Hao Zhong et al. “Inferring Resource Specifications from Natural Lan-
guage API Documentation”. In: Proceedings of the 2009 IEEE/ACM Inter-
national Conference on Automated Software Engineering. ASE ’09. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 307–318. ISBN: 978-
0-7695-3891-4. DOI: 10.1109/ASE.2009.94. URL: http://dx.
doi.org/10.1109/ASE.2009.94.

[51] Minhaz F. Zibran. “What Makes APIs Difficult to Use?” In: International
Journal of Computer Science and Network Security 8.4 (2008), pp. 255–
261. URL: http://paper.ijcsns.org/07_book/html/
200804/200804036.html.

22

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics and Statistics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Computer Science
• Computer Engineering

ISBN 978-952-12-3556-6
ISSN 1239-1891

