Sugar hydrogenation in continuous reactors: From catalyst particles towards structured catalysts

A1 Journal article (refereed)

Internal Authors/Editors

Publication Details

List of Authors: Víctor A. Sifontes Herrera, Daniel E. Rivero Mendoza, Anne-Riikka Leino, Jyri-Pekka Mikkola, Aleksey Zolotukhin, Kari Eränen, Tapio Salmi
Publication year: 2016
Journal: Chemical Engineering and Processing
Volume number: 109
Start page: 1
End page: 10
eISSN: 1873-3204


The density, viscosity and hydrogen solubility of selected sugars (l-arabinose, d-galactose, d-maltose and l-rhamnose) were determined at different temperatures (generally 60, 90 and 130 °C). The role of internal diffusion resistance in porous catalyst layers for sugar hydrogenation was confirmed by numerical simulations based on kinetic data and physical properties. The simulations suggested the use of small catalyst particles or structured catalysts in continuous hydrogenation of the sugars to sugar alcohols. Continuous hydrogenation of l-arabinose was carried out in a laboratory-scale fixed bed reactor with ruthenium catalysts on three different supports (active carbon clothes, carbon nanotubes on sponge-like metallic structures, conventional active carbon catalyst particles). It was proved that continuous hydrogenation is a feasible alternative to batch technology for sugar hydrogenation over conventional catalyst particles and structured catalysts: l-arabinose was converted to arabitol with a very high selectivity.


engineering education

Last updated on 2020-07-06 at 05:10