Switchable ionic liquids enable efficient nanofibrillation of wood pulp

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Linn Berglund, Ikenna Anugwom, Mattias Hedenström, Yvonne Aitomäki, Jyri-Pekka Mikkola, Kristiina Oksman
Publication year: 2017
Journal: Cellulose
Volume number: 24
Issue number: 8
Start page: 3265
End page: 3279
eISSN: 1572-882X


Abstract

Use of switchable ionic liquid (SIL) pulp offers an efficient and greener technology to produce nanofibers via ultrafine grinding. In this study, we demonstrate that SIL pulp opens up a mechanically efficient route to the nanofibrillation of wood pulp, thus providing both a low cost and chemically benign route to the production of cellulose nanofibers. The degree of fibrillation during the process was evaluated by viscosity and optical microscopy of SIL treated, bleached SIL treated and a reference pulp. Furthermore, films were prepared from the fibrillated material for characterization and tensile testing. It was observed that substantially improved mechanical properties were attained as a result of the grinding process, thus signifying nanofibrillation. Both SIL treated and bleached SIL treated pulps were fibrillated into nanofibers with fiber diameters below 15 nm thus forming networks of hydrophilic nature with an intact crystalline structure. Notably, it was found that the SIL pulp could be fibrillated more efficiently than traditional pulp since nanofibers could be produced with more than 30% less energy when compared to the reference pulp. Additionally, bleaching reduced the energy demand by further 16%. The study demonstrated that this switchable ionic liquid treatment has considerable potential in the commercial production of nanofibers due to the increased efficiency in fibrillation.


Last updated on 2020-07-06 at 04:18