Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Vazquez M, Bobacka J, Ivaska A, Lewenstam A
Publisher: ELSEVIER SCIENCE SA
Publication year: 2002
Journal: Sensors and Actuators B: Chemical
Journal acronym: SENSOR ACTUAT B-CHEM
Volume number: 82
Issue number: 1
Start page: 7
End page: 13
Number of pages: 7
ISSN: 0925-4005


Abstract

The electrochemical stability of poly(3,4-ethylenedioxythiophene) (PEDOT) is studied in view of its use as ion-to-electron transducer (solid contact) in all-solid-state ion-selective electrodes (ISEs). PEDOT is electrochemically deposited on glassy carbon (GC) and the resulting GC/PEDOT electrodes are studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and potentiometry. Valinomycin-based all-solid-state K+-ISEs are constructed by placing a K+-selective poly(vinyl chloride) (PVC)-based membrane on the GC/PEDOT electrode (solid contact). The influence of dissolved O-2 and CO2 on the potential of the GC/PEDOT electrodes and of all-solid-state K+-ISEs is studied. PEDOT is compared with polypyrrole (PPy) as the solid contact material. A significant difference between the two conducting polymers (CPs) is that PEDOT is less sensitive to O-2 and CO2 (pH) than PPy. Therefore, PEDOT is a promising new candidate as ion-to-electron transducer (solid contact) in all-solid-state ISEs based on solvent polymeric membranes that are permeable to O-2 and CO2. (C) 2002 Elsevier Science B.V. All rights reserved.


Keywords

All-solid-state ion-selective electrode, Potential stability

Last updated on 2019-20-11 at 05:26