Probing for preferential interactions among sphingolipids in bilayer vesicles using the glycolipid transfer protein

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Mattjus P, Kline A, Pike HM, Molotkovsky JG, Brown RE
Publisher: AMER CHEMICAL SOC
Publication year: 2002
Journal: Biochemistry
Journal acronym: BIOCHEMISTRY-US
Volume number: 41
Issue number: 1
Start page: 266
End page: 273
Number of pages: 8
ISSN: 0006-2960
eISSN: 1520-4995


Abstract

We have investigated the intervesicular transfer of galactosylceramide between unilamellar bilayer vesicles composed of differing sphingomyelin and phosphatidylcholine molar ratios. To monitor glycolipid transfer from donor to acceptor vesicles, we used a fluorescence resonance energy transfer assay involving anthrylvinyl-labeled galactosylceramide (AV-GalCer.) and perylenoyl-labeled triglyceride. The transfer was mediated by glycolipid transfer protein (GLTP). purified from bovine brain and specific for glycolipids. The initial transfer rate and the total accessible pool of glycolipid in the donor vesicles were both measured. An increase in the sphingomyelin content of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) vesicles decreased the transfer rate in a nonlinear fashion. Decreased transfer rates were clearly evident at sphingomyelin mole fractions of 0.22 or higher. The pool of AV-GalCer available for GLTP-mediated transfer also was smaller in vesicles containing high sphingonlyelin content. In contrast, AV-GalCer was more readily transferred from vesicles composed of POPC and different disaturated phosphatidylcholines. Our results show that GLTP acts as a sensitive probe for detecting, interactions of glycosphingolipids with neighboring lipids and that the lateral mixing of glycolipids is probably affected by the matrix lipid composition. The compositionally driven changes in lipid interactions, sensed by GLTP, occur in membranes that are either macroscopically fluid-phase or gel/fluid-phase mixtures. Gaining insights into how changes in membrane sphingolipid composition after accessibility to soluble proteins with affinity for membrane glycolipids is likely to help increase our understanding of how sphingolipid-enriched microdomains (i.e., "rafts" and caveolae) are formed and maintained in cells.

Last updated on 2019-24-09 at 02:42