All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl)phosphate with tetraoctylammonium chloride as cationic additive

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Tom Lindfors, Ari Ivaska
Publisher: ELSEVIER SCIENCE BV
Publication year: 2000
Journal: Analytica Chimica Acta
Journal acronym: ANAL CHIM ACTA
Volume number: 404
Issue number: 1
Start page: 111
End page: 119
Number of pages: 9
ISSN: 0003-2670
eISSN: 1873-4324


Abstract

A novel all-solid-state Ca2+-selective electrode was prepared of soluble electrically conducting polyaniline (PANI), di(2-ethylhexyl)phosphate (H+DEHP) and tetraoctyl ammonium chloride (TOA+Cl). PANI is made soluble and electrically conducting in tetrahydrofuran (THF) with H+DEHP. The DEHP anion is a complexing agent of the charged carrier type for Ca2+. TOA+Cl is added to this solution and electrode membranes are then prepared by drop casting on a GC substrate. PANI membranes containing 0–40% (m/m) TOA+Cl has been studied in this work.

The Ca2+-sensitivity was significantly improved by incorporation of 20–30% (m/m) TOA+Cl in the PANI electrode membrane. The best Ca2+-sensitivity, 27.0 ± 0.4 mV/log aCa (10−1–10−3 M CaCl2, n = 3, LOD = 10−4 M) in 0.1 M NaCl, was obtained with an electrode membrane containing 25% TOA+Cl (PANI25). The reproducibility of the standard potential of three identical PANI25 electrodes was also very good. The selectivity coefficient (logKCa,jpot) of this electrode towards j = Na+, K+ and Li+ is −1.6. However, Mg2+ shows severe interference in determination of Ca2+.

No redox sensitivity was observed for the PANI25 electrode in a 10 mM Fe(CN)63−/4− solution with 0.1 M CaCl2 as the ionic background and only a weak redox response, 5 mV/decade, could be detected with 10−3 M CaCl2 as the ionic background. The pH sensitivity of the PANI25 electrodes studied was found to be approximately 5 mV/pH within the pH range of 4.5–9.7.

Furthermore, the impedance spectrum and the cyclic voltammogram of the PANI25 electrode reveal that TOA+Cl improves the ionic mobility within the PANI membrane. Finally, it is shown that the working mechanism of the PANI electrode membrane can be explained with the charge carrier model, which is usually applied to PVC-based ion-selective electrodes.


Keywords

calcium, cationic additive, charged carrier, conducting polymer, ion-selective electrode, polyaniline, potentiometry

Last updated on 2019-16-12 at 03:09