Dual targeted poplar ferredoxin NADP(+) oxidoreductase interacts with hemoglobin 1

A1 Journal article (refereed)

Internal Authors/Editors

Publication Details

List of Authors: Jokipii-Lukkari S, Kastaniotis AJ, Parkash V, Sundström R, Leiva-Eriksson N, Nymalm Y, Blokhina O, Kukkola E, Fagerstedt KV, Salminen TA, Läärä E, Bulow L, Ohlmeier S, Hiltunen JK, Kallio PT, Häggman H
Publication year: 2016
Journal: Plant Science
Journal acronym: PLANT SCI
Volume number: 247
Start page: 138
End page: 149
Number of pages: 12
ISSN: 0168-9452
eISSN: 1873-2259


Previous reports have connected non-symbiotic and truncated hemoglobins (Hbs) to metabolism of nitric oxide (NO), an important signalling molecule involved in wood formation. We have studied the capability of poplar (Populus tremula x tremuloides) Hbs PttHb1 and PttTrHb proteins alone or with a flavin-protein reductase to relieve NO cytotoxicity in living cells. Complementation tests in a Hb-deficient, NO-sensitive yeast (Saccharomyces cerevisiae) Delta yhb1 mutant showed that neither PttHb1 nor PttTrHb alone protected cells against NO. To study the ability of Hbs to interact with a reductase, ferredoxin NADP(+) oxidoreductase PtthFNR was characterized by sequencing and proteomics. To date, by far the greatest number of the known dual-targeted plant proteins are directed to chloroplasts and mitochondria. We discovered a novel variant of hFNR that lacks the plastid presequence and resides in cytosol. The coexpression of PttHb1 and PtthFNR partially restored NO resistance of the yeast Delta yhb1 mutant, whereas PttTrHb coexpressed with PtthFNR failed to rescue growth. YFP fusion proteins confirmed the interaction between PttHb1 and PtthFNR in plant cells. The structural modelling results indicate that PttHb1 and PtthFNR are able to interact as NO dioxygenase. This is the first report on dual targeting of central plant enzyme FNR to plastids and cytosol.


Dioxygenation, Dual targeting, Ferredoxin NADP(+) oxidoreductase, Hemoglobin, Nitric oxide, Poplar

Last updated on 2020-04-08 at 05:45