In-vitro Degradation and Bioactivity of Tailored Amorphous Multi Porous Scaffold Structure

A1 Originalartikel i en vetenskaplig tidskrift (referentgranskad)


Interna författare/redaktörer


Publikationens författare: Zhang D, Jain H, Hupa M, Hupa L
Förläggare: WILEY-BLACKWELL
Publiceringsår: 2012
Tidskrift: Journal of the American Ceramic Society
Tidskriftsakronym: J AM CERAM SOC
Volym: 95
Nummer: 9
Artikelns första sida, sidnummer: 2687
Artikelns sista sida, sidnummer: 2694
Antal sidor: 8
ISSN: 0002-7820


Abstrakt

A key requirement for the use of bio scaffold is that its degradation rate matches the growth rate of target tissue. Therefore, the degradation of recently developed tailored amorphous multiporous (TAMP) scaffold of 70SiO2 center dot 30CaO (mol%) in simulated body fluid (SBF) was studied under both static and quasi-dynamic conditions. The degradation was assessed through the dissolution of silica from the glass into SBF, while the in-vitro bioactivity was characterized by precipitation of calcium phosphate (CaP) on and inside the scaffold. Under static conditions, the degradation stopped due to the saturation of solution with silica in 3 days, whereas the precipitation of CaP continued. Rapid degradation and better in-vitro bioactivity was found under quasi-dynamic conditions, where the concentration gradient across the sample was maintained. The degradation followed exponential dependence on time with a half-life of 15.4 days and initial degradation rate 4.5% day-1. The remaining samples maintained their integrity and pore structure during degradation. The degradation occurred in three distinct stages: (a) wetting stage, (b) initial degradation stage when CaP precipitation dominates, and (c) intensive degradation stage when the nanopores rupture and network dissolves. By varying the sintering parameters the nanopore structure, and hence the degradation rate, can be tailored to suit the anticipated tissue regeneration rate. With demonstrated rapid and controllable degradation and good in-vitro bioactivity, the TAMP scaffold shows promise as candidate for bone regeneration application under various conditions in the body.

Senast uppdaterad 2019-14-11 vid 03:45