Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks

A1 Originalartikel i en vetenskaplig tidskrift (referentgranskad)

Interna författare/redaktörer

Publikationens författare: Datta S, Pettersson F, Ganguly S, Saxen H, Chakraborti N
Publiceringsår: 2008
Tidskrift: Materials and Manufacturing Processes
Tidskriftsakronym: MATER MANUF PROCESS
Volym: 23
Nummer: 2
Artikelns första sida, sidnummer: 130
Artikelns sista sida, sidnummer: 137
Antal sidor: 8
ISSN: 1042-6914


Mechanical properties of transformation induced plasticity (TRIP)-aided multiphase steels are modeled by neural networks using two methods of reducing the network connectivity, viz. a pruning algorithm and a predator prey algorithm, to gain understanding on the impact of steel composition and treatment. The pruning algorithm gradually reduces the complexity of the lower layer of connections, removing less significant connections. In the predator prey algorithm, a genetic algorithm based multi-objective optimization technique evolves neural networks on a Pareto front, simultaneously minimizing training error and network size. The results show that the techniques find parsimonious models and, furthermore, extract useful knowledge from the data.


alloy design, evolutionary algorithms, genetic algorithms, multi-objective optimization, neural network, predator-prey, pruning algorithm, TRIP-aided steel

Senast uppdaterad 2020-04-07 vid 05:49