Structural determinants of plant lignans for the formation of enterolactone in vivo

A1 Journal article (refereed)

Internal Authors/Editors

Publication Details

List of Authors: Saarinen NM, Smeds A, Makela SI, Ammala J, Hakala K, Pihlava JM, Ryhanen EL, Sjoholm R, Santti R
Publication year: 2002
Journal: Journal of Chromatography B
Journal acronym: J CHROMATOGR B
Volume number: 777
Issue number: 1-2
Start page: 311
End page: 319
Number of pages: 9
ISSN: 1570-0232


The quantity of mammalian lignans enterolactone (ENL) and enterodiol (END) and of plant lignans secoisolariciresinol (SECO) and 7-hydroxymatairesinol (HMR) excreted in a 24-h rat urine sample was measured after a single p.o. dose of an equivalent quantity of secoisolariciresinol diglycoside (SDG), secoisolariciresinol (SECO), matairesinol (MR), 7-hydroxymatairesinol (HMR) and ENL. Plant lignans (SECO and HMR) were partially absorbed as such. The aglycone form of SECO was more efficiently converted into mammalian lignans END and ENL than the glycosylated form, SDG. Of plant lignans, MR produced the highest quantities of ENL: the quantity was over twofold compared with HMR or SDG. The majority of the animals, which had been given SECO, excreted higher quantities of END than ENL into urine, but ENL was the main lignan metabolite after SDG. The highest quantities of ENL in urine were measured after the administration of ENL as such. The (-)SECO isolated from Araucaria angustifolia was converted into (-)ENL only. The administration of (-)SDG, which was shown to produce (+)SECO, resulted in excretion of (+)ENL only and (-)HMR was converted into (-)ENL only. This confirmed that the absolute configurations at C8 and C8' are not changed during the microbial metabolism. Whether the biological effects are enantiomer-specific, remains to be resolved. (C) 2002 Elsevier Science B.V. All rights reserved.


enterolactone, plant lignans

Last updated on 2020-24-02 at 03:41