Testing the non-diagonal quadratic convex reformulation technique

A4 Konferenspublikationer


Interna författare/redaktörer


Publikationens författare: Otto Nissfolk, Ray Pörn, Tapio Westerlund
Redaktörer: Zdravko Kravanja
Förläggare: Elsevier
Förlagsort: Amsterdam
Publiceringsår: 2016
Tidskrift: Computer Aided Chemical Engineering
Förläggare: Elsevier
Moderpublikationens namn: 26th European Symposium on Computer Aided Process Engineering
Seriens namn: Computer-aided chemical engineering
Volym: 38
Artikelns första sida, sidnummer: 331
Artikelns sista sida, sidnummer: 336
ISBN: 9780444634283
eISBN: 9780444634443
ISSN: 1570-7946


Abstrakt

Ji et al. (2012) introduced a new reformulation technique for general 0-1 quadratic programs. They did not name it so we call it Non-Diagonal Quadratic Convex Reformulation (NDQCR). The reformulation technique is based on the Quadratic Convex Reformulation method developed by Billionnet et al. (2009, 2012, 2013). In this paper we test the NDQCR method. Specifically we test how the number of included non-diagonal elements affect the solution times for solved problems and also the solution qualities for problems not solved within the time-limit. We also present a new best known lower bound for the largest problem in the QAPLIB (2013), the tai256c problem introduced by Taillard (1995).

Senast uppdaterad 2019-06-12 vid 03:39