Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway

A1 Journal article (refereed)


Internal Authors/Editors


Publication Details

List of Authors: Anjana Sarkar, Eduardo Gracia-Espino, Thomas Wågberg, Andrey Shchukarev, Melinda Mohl, Anne-Riikka Rautio, Olli Pitkänen, Tiva Sharifi, Krisztian Kordas, Jyri-Pekka Mikkola
Publication year: 2016
Journal: Nano Research
Volume number: 9
Issue number: 7
Start page: 1956
End page: 1968
eISSN: 1998-0000


Abstract

Nanosized metal (Pt or Pd)-decorated TiO2 nanofibers (NFs) were synthesized by a wet impregnation method. CdSe quantum dots (QDs) were then anchored onto the metal-decorated TiO2 NFs. The photocatalytic performance of these catalysts was tested for activation and reduction of CO2 under UV-B light. Gas chromatographic analysis indicated the formation of methanol, formic acid, and methyl formate as the primary products. In the absence of CdSe QDs, Pd-decorated TiO2 NFs were found to exhibit enhanced performance compared to Pt-decorated TiO2 NFs for methanol production. However, in the presence of CdSe, Pt-decorated TiO2 NFs exhibited higher selectivity for methanol, typically producing ∼90 ppmg−1·h−1 methanol. The CO2 photoreduction mechanism is proposed to take place via a hydrogenation pathway from first principles calculations, which complement the experimental observations.


Keywords

engineering education

Last updated on 2020-07-06 at 05:10