Fault Tolerant Design and Analysis of Carbon Nanotube Circuits Affixed on DNA Origami Tiles

A1 Originalartikel i en vetenskaplig tidskrift (referentgranskad)


Interna författare/redaktörer


Publikationens författare: Eugen Czeizler and Pekka Orponen
Förläggare: IEEE
Publiceringsår: 2015
Tidskrift: IEEE Transactions on Nanotechnology
Volym: 14
Nummer: 5
Artikelns första sida, sidnummer: 871
Artikelns sista sida, sidnummer: 877
ISSN: 1536-125X
eISSN: 1941-0085


Abstrakt

Due to its programmable nature, DNA nanotechnology is currently one of the most advanced and most reliable self-assembly-based methodologies for constructing molecular-scale structures and devices. This makes DNA nanotechnology a highly promising candidate for generating radically new manufacturing technologies. Our specific interest is in the use of DNA as a template and scaffold for the self-assembly of carbon-nanotube field effect transistor (CNFET) circuits. In this paper, we introduced a novel high-level design framework for self-assembling CNFET circuits. According to this methodology, the elements of the circuits, i.e., CNFETs and the connecting carbon nanotube wires, are affixed on different rectangular DNA scaffolds, called tiles, and self-assemble into the desired circuit. The introduced methodology presents several advantages, both at the design level, and for analyzing the reliability of these systems. We make use of these advantages and introduce a new fault-tolerant architecture for CNFET circuits. Then, we analyze its reliability both by computer simulations and by analytical methods.


Nyckelord

Computer sciences, DNA, nanotechnology, single walled carbon nanotubes

Senast uppdaterad 2020-26-02 vid 03:41